oo e, "C/ Ocedn

(T2T)T33-2447 1
Fax:(T2T)T33-3962 I (:S
www.OceanOptics.com

N Y

HALMA

GROUP
COMPANY

Engineering Note

Topic: NeoFox Communication Interfaces
Products Affected: NeoFox

Date Issued: 04/18/2011

Updated: November 2012

Description

NeoFox is a dynamic measurement system that has been designed to work with a variety of optical probes to
measure oxygen in a variety of conditions. To support the various probe technologies and the broad spectrum of
applications that employ the system, the NeoFox measurement system itself has a multitude of configuration
options that must be considered by developers and advanced scientists. This document will discuss the process
by which NeoFox parameters are written to and read from the device. It assumes that the reader already has a
basic understanding of how the NeoFox measures oxygen and a basic understanding of general programming

concepts.

Topics addressed in this Engineering Note include the following:
Topic

Description

Architecture Overview

NeoFox Serial Interface

DLL Interface

NeoFox DLL Function Reference

Driver Interface and Hardware Interface

NeoFox Variable Reference Table

Additional Firmware Controls in FW Version 2.25

013-20000-010-04-201211

NeoFox Communication Interfaces .. ODTICS

Architecture Overview

Variables and Parameters

All communication with the NeoFox centers upon either reading or setting variables on the hardware device. For
instance, a developer may want to set the number of scans to average parameter or read the current sensor
temperature value. In either case, there is a specific variable in the system’s memory which should be set or
read. This document includes reference information for all public variables and also describes the various
methods with which to interact with these variables.

Communication Architecture

The diagram below illustrates the various layers involved in NeoFox’s communication stack. Developers may
want to interact with the device at any level. This document will provide enough information to do so by
documenting the DLL interface and the serial interface. The two other interfaces — the driver interface and the
hardware interface can be inferred through knowledge of the serial interface and developer information from
FTDI.

Software

The NeoFox Viewer is a graphical user interface that

NeoFox Viewer allows end users to interact with the NeoFox

* DLL Interface
\ 4

i NeoFox DLL

The NeoFox DLL accepts high level function calls from
applications and abstracts the lower level drivers from
programmers.

* Driver Interface
\ 4
USB Driver

The USB driver is provided by FTDI - the manufacturer of
the UART-USB Bridge chip. It accepts function calls from
the DLL and sends USB commands to the hardware.

The UART-USB bridge chip accepts USB commands from
a host computer and communicates with the microprocessor
through a UART.

UART-USB Bridge

A .
Serial Interface

1
1
1
1
1
1
1
1
:
1
\ 4 M
1
1
1
1
1
1
1
1

The microprocessor communicates via a serial
communications interface through its UART. It does not
natively handle USB communications.

Microprocessor

Hardware

2 013-20000-010-04-201211

goOcean
.. ODTICS NeoFox Communication Interfaces

NeoFox Serial Interface

Overview

The NeoFox serial protocol can be used for a number of purposes. Most significantly, future versions of the
NeoFox hardware may have an RS232 serial output that will directly expose this protocol. Additionally,
knowledge of the serial protocol can be used in conjunction with knowledge of the FTDI USB protocol to create
custom USB drivers for the NeoFox, which are necessary for embedded host applications or non-windows based
PC host applications.

From the perspective of the embedded microcontroller, the serial protocol essentially has only two functions: to
read and write parameters and variables.

Settings

Setting Value

Baud Rate: 750,000 baud (default)
Stop Bits: 1

Parity: None

Flow Control: None

Byte Order: Little endian

Integer Size: 4 bytes

Float Size: 4 bytes

The following settings represent the default settings of the UART when used in through the USB interface. The
default settings for the UART when it is communicating through the RS232 interface are listed in RS232 Default
Settings.

Writing Data to the NeoFox

All of the writable parameters on the NeoFox fall into two categories: floating point types and integer types
(including char, short, etc). Regardless of type, all parameters accept the same command frame structure to set
their values. This structure is documented below. There are two fields in this command that require detailed
explanation.

First, bytes 8 through 11 hold the ParamType field. This field contains a code that indicates which parameter is
to be set by the command. A list of parameters and codes is available at the end of this document.

The ParamValue field (bytes 12 through 15) contains the actual value that is to be set by the command. This
field does not have an explicit type listed in the table below. The type is determined by the type of the parameter
value (also listed in the table at the end of this document). If the parameter is an integer type (short, char, long,
etc), then these four bytes are interpreted as a 4 byte signed integer (little endian) and then cast to the actual
type. If the parameter is a floating point type, then the four bytes are explicitly interpreted as a little endian
floating point value.

013-20000-010-04-201211 3

NeoFox Communication Interfaces

e

YyOcean
.u. Optics

O

Addr | Type | Name Description

0 uchar | Stx Start of transmission character. Set to 0x03.

1 uchar | PacketType | Setto 0xC8

2 ushort | FrameSize Set to 20 (0x14).

4 ulong | CmdNumber | Reserved. Setto 0.

8 ulong | ParamType | Type code for the parameter that is to be set.

12 n/a ParamValue | Value for the parameter to be set. Can be a float or integer type.
16 uchar | Reservedl Reserved. Set to 0.

17 uchar | Reserved2 Reserved. Set to 0.

18 uchar | Checksum Set to the aggregate sum of all previous bytes modulus 256.
19 uchar | Eof End of transmission character. Set to 0x04.

Reading Data from the NeoFox

The NeoFox streams a “data dump” of all its publicly exposed parameters after each sample. This occurs
approximately once every tenth of a second. The location of each particular value within this stream is given in
the table at the end of this document. The data stream is structured as follows.

Addr | Type | Name Description

0 uchar | Stx Start of transmission character. Set to 0x03.

1 uchar | PacketType | Setto 0xDC

2 ushort | FrameSize Set to 5036 (0x13AC)

4 uchar | FrameCount | Number of frames uploaded since the device powered on. This
rolls over after 255. It can be used to determine whether any
frames have been missed.

5 uchar | ProtocolRev | The value of the Data Copy Type parameter. The structure is a
"type 1" structure (the default communication structure for
NeoFox). Therefore, this value will be 0x01. See Data Copy Type
for more information on alternative data structures.

6 uchar | Reservedl Reserved. Do not depend on this value.

7 uchar | Reserved2 Reserved. Do not depend on this value.

8 n/a Data Parameters are stored in this region of the structure. See the table

at the end of this document for variable-specific documentation

927 and addresses.

928 struct | SensorBlue | Blue sensor waveform raw data. This contains the data that can

be seen in the “sensor waveform window” in the NeoFox Viewer.

2979

2980 struct | SensorRed | Red sensor waveform raw data. This contains the data that can

013-20000-010-04-201211

goOcean
.. ODTICS NeoFox Communication Interfaces

Addr | Type | Name Description

be seen in the “sensor waveform window” in the NeoFox Viewer.
5031

5032 uchar | Reserved3 Reserved. Do not depend on this value.

5033 uchar | Reserved4 Reserved. Do not depend on this value.

5034 uchar | Checksum Set to the aggregate sum of all previous bytes modulus 256.

5035 uchar | Eof End of transmission character. Set to 0x04

DLL Interface

The NeoFox DLL can be used by developers without the need to understand the USB or serial interface layers.

The DLL itself abstracts these layers and provides an interface of high-level function calls. This DLL interface

can be easily used with almost any programming language: Labview, C, C++, Visual Basic, Java, or even VBA
for excel.

The DLL enables the user to perform any of the following four common actions: It allows users to open a
connection to a NeoFox device, read values from the device, set parameters on the device, and close the
connection to the device. The functions which enable these actions are described below.

Opening a Connection

There are two steps to creating a connection to a NeoFox. First, the user must call the DevicePerformDiscovery
function, which internally creates an index list of all unopened NeoFox units that are connected to the computer.
In addition to creating an indexed list, this function will also inform the user of the number of unopened NeoFox
units that are connected.

Once the list has been created, the user must call the DeviceOpenChannel for each NeoFox unit for which a
connection is to be established. The DeviceOpenChannel function takes an index as its parameter and it opens
the particular NeoFox unit that corresponds to that index in the list that was generated by the
DevicePerformDiscovery function. However, since DevicePerformDiscovery does not provide any information
about the units that it discovers, the indices are essentially arbitrary and in order to select any particular NeoFox
unit, the user will basically need to open all available NeoFox units and they query them each individually to
determine its name. It can then close connections to the units that it does not need.

Reading Data from the NeoFox

Reading variables from the device is accomplished through either of two functions: DeviceGetParameter or
DeviceGetParameterFloat. The determination of which function to use is based on the type of the variable that is
to be read. Use DeviceGetParameterFloat for floating point type parameters and DeviceGetParameter for any
other type of parameter.

It is important to note that the NeoFox is a discrete sampling system. New samples are only refreshed from the
hardware device approximately once every tenth of a second, and operating system latency may result in even
lower throughput. Therefore, developers may find it useful to poll the Millisecond Count variable to evaluate
whether or not information in the DLL has been refreshed since the last time that information was read.

013-20000-010-04-201211 5

joOcean
NeoFox Communication Interfaces .. ODTICS

Writing Data to the NeoFox

Writing variables to the device is similarly accomplished through either of two functions: DeviceSetParameter
or DeviceSetParameterFloat. Again, the determination of which function to use will be based on the type of the
data that is to be sent.

Closing a Connection

When interaction with the device is complete, the connection should be closed by calling the DeviceClose
function.

Application Maintenance

Before calling any functions from the DLL, applications should make a call to the DLL’s ApplicationStartup
function, which will begin a new thread in which it can run its background processes. Before exiting,
applications should call ApplicationShutdown to terminate this thread.

Sample Code

A sample C++ program (MS Visual C++) that demonstrates how to use the device is available from the Ocean
Optics Sensors website.

Remarks

There is one additional issue that some early developers have faced which bears some discussion. The szText
parameters, which are defined as type LPTSTR, are implemented as type char* in the DLL. There is a known
issue with the Microsoft Visual C++ compiler in which sometimes the compiler has trouble casting between
LPTSTR and char* types. One simple way to resolve this issue is to not include windows.h, which defines
LPTSTR, and use a typedef instead (typedef char* LPTSTR). Another, more advisable, way to correct this issue
is to set the project properties to use a multi-byte character set. This can be done by adjusting the “character set”
project property at Properties - Configuration Properties = General.

It is also important to note that the maximum number of NeoFox units that can be supported by the DLL at one
time is 8.

6 013-20000-010-04-201211

http://www.oceanopticssensors.com/
http://www.oceanopticssensors.com/

goOcean
.. ODTICS NeoFox Communication Interfaces

NeoFox DLL Function Reference

int DeviceSetParameter(int hDevice, int ParamType, int dValue)

Description
Sets an integer parameter on the NeoFox.

Parameters

int hDevice Handle to an open NeoFox device.

int ParamType Unique code for the parameter which is to be set.
int dvalue Value to be written to the parameter.

Return Value

Number of bytes written to the hardware device in order to issue the set parameter command message. This
includes the command packet overhead in addition to the ParamType code and the dValue payload. At the time
of this writing, the size of this transaction is 20 bytes.

Remarks
Although the dValue parameter is a 4 byte integer, this function should also be used to set short and char type
parameters as well.

int DeviceSetParameterFloat(int hDevice, int ParamType, float fValue)

Description
Sets a floating point parameter on the NeoFox.

Parameters

int hDevice Handle to an open NeoFox device.

int ParamType Unique code for the parameter which is to be set.
float fValue Value to be written to the parameter.

Return Value

Number of bytes written to the hardware device in order to issue the set parameter command message. This
includes the command packet overhead in addition to the ParamType code and the dValue payload. At the time
of this writing, the size of this transaction is 20 bytes.

int DeviceGetParameter(int hDevice, int ParamType, LPTSTR szText)

Description
Reads an integer type parameter from the NeoFox device.

013-20000-010-04-201211 7

NeoFox Communication Interfaces ..ODTICS
Parameters

int hDevice Handle to an open NeoFox device

int ParamType Unique code for the parameter which is to be read.

LPTSTR szText A character buffer (char*). Be sure to pass this parameter a pointer

to an initialized buffer of at least 50 bytes.

Return Value
The function returns an int that represents the value that has been queried from the device. In some cases, it will
also populate the szText buffer with a textual representation of the integer value.

Remarks

Although this function returns a 4 byte integer value, it should also be used to query the values of short and char
type parameters. It is also important to note that although the function will sometimes populate the szText
buffer, users are advised not to use this value unless the szText parameter is explicitly discussed in a particular
variable’s information (from the variable table at the end of this document).

float DeviceGetParameterFloat(int hDevice, int ParamType, LPTSTR szText)

Description
Reads a floating point type parameter from the NeoFox device.

Parameters

int hDevice Handle to an open NeoFox device

int ParamType Unique code for the parameter which is to be read.

LPTSTR szText A character buffer (char*). Be sure to pass this parameter a pointer to an

initialized buffer of at least 50 bytes.

Return Value
The function returns a float that represents the value that has been queried from the device. In some cases, it will
also populate the szText buffer with a textual representation of the integer value.

Remarks

Although this function returns a 4 byte integer value, it should also be used to query the values of short and char
type parameters. It is also important to note that although the function will sometimes populate the szText
buffer, users are advised not to depend on this information, which is not explicitly supported.

int ApplicationStartup(int hinstance)

Description

This function starts a thread for the DLL.

Parameters

int hinstance Pass NULL to this parameter.

8 013-20000-010-04-201211

goOcean
.. ODTICS NeoFox Communication Interfaces

Return Value
This function always returns a value of 1.

Remarks
This function should be called at the beginning of any user program, before any other DLL functions are called.

int DevicePerformDiscovery(int vendorID, int productID, int ShowGUI)

Description
This function instructs the DLL to create an indexed list of all NeoFox devices that are connected to the system
via USB but have not been opened already.

Parameters

int vendorID Vendor ID for the NeoFox product. The value is 0x2457.
int productID Product ID for the NeoFox product. The value is 0x3000.
int ShowGUI This parameter is reserved. Pass it a value of 0.

Return Value
This function returns the number of NeoFox devices that have been connected to the system via USB, but have
not yet been opened with the DeviceOpenChannel function.

Remarks

This function must be called before a call to DeviceOpenChannel. It creates internally an indexed list of
unopened NeoFox devices. The DeviceOpenChannel function will accept one of the indices from that list as a
parameter to determine which device will be opened. It is important to note that once the DeviceOpenChannel
function has been called to open a connection to any of the NeoFoxes in the list, the remaining indices remain
valid until the next call to DevicePerformDiscovery. When DevicePerformDiscovery is called after
DeviceOpenChannel has been called, it will re-index its list without including the newly opened NeoFox.
Subsequent calls to DeviceOpenChannel will need to use the new indices as appropriate.

int DeviceOpenChannel(int Select, int SubChannel, int ShowGUI)

Description
Opens a NeoFox device and returns a handle to that device.

Parameters

int Select Index of the unopened NeoFox which is to be opened. See remarks
for more information about this parameter.

int SubChannel This parameter is reserved. Pass it a value of 0.

int ShowGUI This parameter is reserved. Pass it a value of 0.

Return Value

Returns an integer handle to the NeoFox device that has been opened by the function. A value of 0 or -1
indicates that the function has failed to open the NeoFox device properly. Handle values begin at 10000 and
increment upwards as new NeoFox devices are opened.

013-20000-010-04-201211 9

goOcean
NeoFox Communication Interfaces .. ODTICS

Remarks

This function should be called immediately after the DevicePerformDiscovery function has been called. The
DevicePerformDiscovery function will create an indexed list of all NeoFoxes that are connected to the computer
via USB and the DevicePerformDiscovery function will then instruct it to open a connection to one of those
devices by passing in a specific index from the list and receiving a handle to the connection.

One common question is how the appropriate index value for the Select parameter should be determined. For
those users who can assume that only one NeoFox device will be connected to the system, the simple answer is
to pass this parameter a value of 0. Some users may need to account for the scenario where multiple NeoFox
units are present in the system, but only one particular unit is to be opened. In this case, the suggested approach
is to open all available NeoFox units and query their names directly, then close connections to all but the target
device. Note that the number of unopened devices attached to the system at any time is returned by the
DevicePerformDiscovery function.

int ApplicationShutdown()

Description
Terminates the DLL’s thread and performs cleanup operations.

Parameters
None

Return Value
Returns 1 if successful.

int DeviceClose(int hDevice)

Description
Terminates a connection to a particular device.

Parameters
int hDevice Handle to an open NeoFox device.

Return Value
Returns 1 if successful.

10 013-20000-010-04-201211

goOcean
.. ODTICS NeoFox Communication Interfaces

Driver Interface and Hardware Interface

Some developers may wish to access the NeoFox device at the USB driver level or the hardware level. To do
this, developers will need to combine the information from the serial interface description in this document with
information from the USB-UART bridge chip manufacturer, FTDI. The chip that is used on the NeoFox is the
FT232RQ.

Driver Interface

An example of an application that would use the driver interface level would be an application that needs to run
on Linux or Macintosh computers — systems for which a USB driver is already available from FTDI but support
for the NeoFox DLL is not.

Driver information is available from FTDI at the link below. This documentation will explain how to use
function calls to the USB driver to exercise the USB-UART bridge’s UART. In other words, it will explain how
to write bytes to the UART and read bytes from the UART. In this way, the developer can use the serial
interface information from this document to interact with the microcontroller.

The driver documentation is located here: http://www.ftdichip.com/Drivers/D2XX.htm .

Hardware Interface

An example of an application that would use the hardware interface level would be a system that uses an
embedded microcontroller’s USB “On the Go” host feature to host the NeoFox. In this case, the developer
would need to write custom USB drivers for his device. To do this, he would need to understand the way that
the NeoFox hardware communicates over USB — the hardware interface.

Hardware interface documentation is also available from FTDI. This documentation explains how USB
commands can be sent to the device to exercise the UART. Again, this information can be combined with
knowledge of the serial interface to produce a compete interface description of the device.

Unfortunately, the hardware interface information from FTDI is not publicly available. However, it can be
obtained from FTDI by entering into an NDA with them. To obtain the USB communication documentation,
send an email to supportl@ftdichip.com.

One important note for developers who will interface directly with the USB layer is that in order to begin
interacting with the device, the first step in communications will be to set up the USB chip’s UART settings.
These settings must match the NeoFox processor’s UART settings. Specifically, the developer will need to set
the baud rate, parity, data bits, and stop bits. Information on how to set these settings is provided in the OEM
documentation from the chip vendor, FTDI. The processor’s settings are listed in a table in the NeoFox Serial
Interface section of this document.

NeoFox Variable Reference Table

The following table lists all publicly exposed parameters and variables that are available to the developer.
Because the DLL interface and serial interface both operate on the same variable space, the information contains
information that is relevant to both.

The table information is organized as follows:

013-20000-010-04-201211 11

http://www.ftdichip.com/Drivers/D2XX.htm
mailto:support1@ftdichip.com

goOcean

NeoFox Communication Interfaces . ODTICS
Parameter Name Type | Range Param Type | Address V1
DLL ParamType Constant Set Function Get Function

e Parameter Name — The name of the parameter, as you will find it throughout this document and others that
describe the NeoFox.

o Type — The data type of the parameter.

e Range - The valid range of values for the parameter or value. For writable parameters, developers should
ensure that the values written are within the acceptable range. For readable parameters, the developer should
consider values that are outside of the given range invalid.

e Param Type — The parameter code, which is used in the both the DLL interface and the serial interface. In
the DLL, this value is passed to DeviceGetParameter as the ParamType argument in order to read a value
and it is passed to DeviceSetParameter as the ParamType argument in order to set a value. In the serial
protocol, it serves as the ParamType code within a command message to set a parameter.

e Address V1 -- The address for the parameter within the serial interface’s readback “data dump”. This
address is only valid for protocol version 1 (ie: the ProtocolRev field = 1). Future versions of the protocol
may have parameters located at different addresses.

e DLL ParamType Constant — The constant which has been defined in the NeoFoxDLL.h file to represent
the ParamType code for this parameter.

e Set Function — The DLL function to call in order to set the parameter.
e Get Function — The DLL function to call in order to read the parameter.

Percent Oxygen Float [0<X 20 [740

NEOFOX_OXYGEN Read-Only DeviceGetParameterFloat

The Percent Oxygen parameter is the partial pressure of oxygen, expressed as percent of 1 ATM. Note that it does not
actually represent the concentration of oxygen relative to ambient pressure. The Percent Oxygen option produced by the
Converted Oxygen parameter can be used to represent the concentration of ambient pressure.

Converted Oxygen Float | 0<X 23 | 864

NEOFOX_OXYGEN_CONVERTED Read-Only DeviceGetParameterFloat

Converted oxygen is the current oxygen reading, converted from percent of 1LATM to an alternate unit. The Oxygen Units
parameter documentation has more information about which units are available.

Oxygen Units Uint | Enum 152 | 488

NEOFOX_OXYGEN_UNITS DeviceSetParameter DeviceGetParameter

Sets the unit type for the Converted Oxygen parameter.

The Value Units Description DLL Constant
0 Percent of 1 ATM Gaseous — Partial Pressure NEOFOX_02_UNITS PERCENT _
PARTIAL_PRESSURE
1 Parts per Million Dissolved — Concentration NEOFOX_02_UNITS DO_PPM
4 Torr Gaseous — Partial Pressure NEOFOX_02_UNITS TORR
7 Micro Mole per Liter Dissolved — Concentration NEOFOX_02_UNITS UMOL_L
8 Percent Concentration Gaseous — Concentration NEOFOX_02_UNITS _PERCENT _

CONCENTRATION

Ambient pressure is measured in the electronics unit itself. Therefore, the percent oxygen concentration value will be
incorrect if the ambient pressure of the electronics unit and the ambient pressure of the probe's environment are not the
same. See NeoFox Calibration and Measurement for more information about the converted oxygen parameters.

12 013-20000-010-04-201211

http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf

goOcean

..ODTICS NeoFox Communication Interfaces
Tau Float |-1<X 19 | 736
NEOFOX_TAU Read-Only DeviceGetParameterFloat

Tau is an intermediate value, expressed in microseconds, that is calculated in the conversion from phase to oxygen. It
should be used for diagnostic purposes only.

Temperature Source Uint | Enum 165 | 316

NEOFOX_CAL TEMP_SOURCE DeviceSetParameter DeviceGetParameter

Temperature Source determines which source should be used for temperature measurement during calibration. When the
value is 0 (no temperature source), measurements which are dependant upon temperature such as dissolved O2 readings and
multipoint calibrations should return -1.

Value Description DLL Constant

0 No temperature source is used. NEOFOX_TEMP_SOURCE_NONE

1 The external temperature sensor is used. NEOFOX_TEMP_SOURCE_SENSOR

2 The “Fixed Temperature” is used. NEOFOX_TEMP_SOURCE_FIXED
Fixed Temperature Float | X <200 164 | 304
NEOFOX_ CAL DEFAULT TEMP DeviceSetParameterFloat DeviceGetParameterFloat

Fixed Temperature is a user defined fixed temperature that can be used instead of the external temperature sensor in the
conversion process.

Sensor Temperature Int | X <200%2" 10 | 796

NEOFOX_TEMPERATURE Read-Only DeviceGetParameter

Sensor Temperature is the temperature value of the sensor in degrees Celsius.

It is important to note that this parameter is stored in a fixed point representation in the NeoFox’s variable space. Therefore,
in order to use this value as a floating point number, the raw value must be converted from fixed point (integer type) to
floating point with the formula below.

Floating Point Temperature Value (in degrees Celsius) = Raw Integer Temperature Value / 2*°

Number of Averages Uint | 1<X<300 129 | 88

NEOFOX_PHASE_AVG_CNT BLUE DeviceSetParameter DeviceGetParameter

Number of Averages is the number of oxygen samples that are averaged together on the NeoFox to produce the current
value of the Percent Oxygen and Converted Oxygen values. This is a running average.

Flashing On/Off Uint | Enum 121 | 528

NEOFOX_LED CONTROL DeviceSetParameter DeviceGetParameter

The Flashing On/Off parameter enables and disables sampling. When this parameter is set to off, the LEDs will not flash.
Tau and oxygen measurements will be 0 or -1 and should be considered invalid.

Value Description DLL Constant
0 Flashing Off NEOFOX_FLASHING_OFF
3 Flashing On NEOFOX_FLASHING_ON

013-20000-010-04-201211 13

foOcean

NeoFox Communication Interfaces .. ODTICS
Name char[] | n/a 1 | nfa
NEOFOX_NAME Read-Only DeviceGetParameter

This is the unique serial number that is programmed in to every NeoFox unit. Unfortunately, it cannot be read through the
serial interface. To read this parameter from the DLL, call DeviceGetParameter and the serial number will be populated into
the szText buffer. The serial number cannot be set through the DLL.

0-5V Lower Bound Float | n/a 214 | 472

NEOFOX_AOUT _VOLTAGE LBOUND DeviceSetParameterFloat DeviceGetParameterFloat

The 0-5V Lower Bound parameter is one of the 0-5V analog output settings. The value of this particular parameter sets the
lower bound value for the following formula, which determines the 0-5 Volt analog output voltage. More information about
this parameter and how to set up the analog outputs is available in the user manual.

Output (Volts) = (Source Value — Lower Bound Value) / (Upper Bound Value — Lower Bound Value) * 5 Volts

0-5V Upper Bound Float | n/a 215 | 476

NEOFOX_AOUT VOLTAGE UBOUND DeviceSetParameterFloat DeviceGetParameterFloat

The 0-5V Upper Bound parameter is one of the 0-5V analog output settings. The value of this particular parameter sets the
upper bound value for the following formula, which determines the 0-5 Volt analog output voltage. More information about
this parameter and how to set up the analog outputs is available in the user manual.

Output (Volts) = (Source Value — Lower Bound Value) / (Upper Bound Value — Lower Bound Value) * 5 Volts

4-20mA Lower Bound Float | n/a 216 | 480

NEOFOX_AOUT_CURRENT_LBOUND DeviceSetParameterFloat DeviceGetParameterFloat

The 4-20mA Lower Bound parameter is one of the 4-20mA analog output settings. The value of this particular parameter
sets the lower bound value for the following formula, which determines the 4-20mA analog output current. More
information about this parameter and how to set up the analog outputs is available in the user manual.

Output (mA) =[16mA*(Source Value — Lower Bound Value) / (Upper Bound Value — Lower Bound Value)]+4mA

4-20mA Upper Bound Float | n/a 217 | 484

NEOFOX_AOUT CURRENT UBOUND DeviceSetParameterFloat DeviceGetParameterFloat

The 4-20mA Upper Bound parameter is one of the 4-20mA analog output settings. The value of this particular parameter
sets the upper bound value for the following formula, which determines the 4-20mA analog output current. More
information about this parameter and how to set up the analog outputs is available in the user manual.

Output (mA) =[16mA*(Source Value — Lower Bound Value) / (Upper Bound Value — Lower Bound Value)]+4mA

14 013-20000-010-04-201211

goOcean

..ODTICS NeoFox Communication Interfaces
0-5V Data Source Char | Enum 212 | 468
NEOFOX_AOUT VOLTAGE_SOURCE DeviceSetParameter DeviceGetParameter

The 0-5V Data Source parameter is one of the 0-5V analog output settings. The value of this particular parameter sets the
source value for the following formula, which determines the 0-5V analog output voltage. In the formula, the source value
and bound parameters are considered dimensionless scalars — that is, only the actual values matter. The units are irrelevant.
More information about this parameter and how to set up the analog outputs is available in the user manual.

Output (Volts) = (Source Value — Lower Bound Value) / (Upper Bound Value — Lower Bound Value) * 5 Volts

Value Description
0 Output is disabled (0V)
Percent Oxygen (in % of 1 ATM)
Sensor Temperature (in degrees C)
Ambient Pressure (in kPa)
Tau (in microseconds)
Converted O2 (in the Converted O2 units selected)
Analog Value 1
Analog Value 2

~N~Nooah~hwWwNRE

4-20mA Data Source Char | Enum 213 | 469

NEOFOX_AOUT CURRENT_SOURCE DeviceSetParameter DeviceGetParameter

The 4-20mA Data Source parameter is one of the 4-20mA analog output settings. The value of this particular parameter sets
the source value for the following formula, which determines the 4-20mA analog output current. In the formula, the source
value and bound parameters are considered dimensionless scalars — that is, only the actual values matter. The units are
irrelevant. More information about this parameter and how to set up the analog outputs is available in the user manual.

Output (mA) =[16mA*(Source Value — Lower Bound Value) / (Upper Bound Value — Lower Bound Value)]+4mA
The 4-20mA Data Source parameter is one of the 4-20mA analog output settings. The value of this particular parameter sets
the source value for the following formula, which determines the 4-20mA analog output current. In the formula, the source
value and bound parameters are considered dimensionless scalars — that is, only the actual values matter. The units are
irrelevant. More information about this parameter and how to set up the analog outputs is available in the user manual.

Output (mA) =[16mA*(Source Value — Lower Bound Value) / (Upper Bound Value — Lower Bound Value)]+4mA

Value Description
0 Output is disabled (4 mA)
Percent Oxygen (in % of 1 ATM)
Sensor Temperature (in degrees C)
Ambient Pressure (in kPa)
Tau (in microseconds)
Converted O2 (in the Converted O2 units selected)
Analog Value 1
Analog Value 2

~N~Nooah~hwWwNBRE

Salinity Correction Factor Float [0<X 218 | 492

NEOFOX_SALINITY_CORRECTION DeviceSetParameterFloat DeviceGetParameterFloat

The Salinity Correction Factor is used in the conversion partial pressure to dissolved oxygen. More information about how
this parameter is used is available in the user manual.

013-20000-010-04-201211 15

NeoFox Communication Interfaces

n
Q.O greaﬁcs

Autogain Enable

Uint | Enum

101 | 600

NEOFOX_AUTOGAIN_ENABLE

DeviceSetParameter

DeviceGetParameter

The Autogain Enable parameter controls whether the NeoFox device will set its gain settings automatically. When
autogain is enabled, the APD voltage, LED drive levels, and gain levels will be optimized automatically. However, it
is recommended that the autogain should be run at the beginning of experiments to set up the device properly and then

disabled during the course of the experiment itself.

Value Description DLL Constant
0 Autogain disabled ~ NEOFOX_AUTOGAIN_DISABLED
1 Autogain enabled NEOFOX_AUTOGAIN_ENABLED
Reference PGA Gain Uint | Enum 105 | 500

NEOFOX_RED_LED_PGA_GAIN

DeviceSetParameter

DeviceGetParameter

The Reference PGA Gain parameter controls the amount of electronic gain that is applied to the input signal before
analog to digital conversion. This parameter applies only at times when the reference LED is being sampled and not

when the actual response of the chemistry is being sampled.

Value Description DLL Constant

0 1X NEOFOX_GAIN_1X

1 2X NEOFOX_GAIN_2X

2 4X NEOFOX_GAIN_4X

3 8X NEOFOX_GAIN_8X

4 20X NEOFOX_GAIN_20X

5 40X NEOFOX_GAIN_40X

6 80X NEOFOX_GAIN_80X

7 160X NEOFOX_GAIN_160X
Stimulus LED Current Uint | 0<X<25000 143 | 516
NEOFOX DAC LED CURRENT BLUE | DeviceSetParameter DeviceGetParameter

The Reference LED Current parameter determines the brightness of the reference LED. The value 0 in this parameter
corresponds to the lowest possible intensity and the value 25000 corresponds to the highest possible intensity.

APD Gain

Uint | 3500<X<9251

141 | 572

NEOFOX_DAC_APD_GAIN

DeviceSetParameter

DeviceGetParameter

This parameter sets the open loop APD bias voltage gain, with 3500 representing the maximum possible gain and
9251 representing the minimum possible gain. Note that there is an inverse relationship between this parameter and
the actual gain. To effectively use this parameter, the APD Voltage value should be monitored and the open loop gain
should be adjusted as appropriate to achieve the target APD voltage. Users should be careful to constrain values to the
appropriate range (never lower than 3500), as excessive gain levels may result in damage to the APD.

APD Voltage

Uint | n/a

17 | 768

NEOFOX_ADC_APD_VOLTAGE

Read-Only

DeviceGetParameter

This parameter allows the user to monitor the APD bias voltage. Higher reverse bias voltages on the APD correspond
to higher “optical gain”, or conversion efficiency, from the detector. The tradeoff of higher APD bias voltage is an
increased risk of detector saturation and higher levels of noise. This value is stored in the NeoFox with a fixed point
representation and hence it must be scaled with the following formula in order to correctly deduce the actual APD

voltage.

Floating Point APD Voltage Value (in Volts) = Raw Integer APD Value / 2°

16

013-20000-010-04-201211

goOcean

..ODTICS NeoFox Communication Interfaces
Ambient Pressure Uint | n/a 15 | 780
NEOFOX_ADC PRESSURE Read-Only DeviceGetParameter

This parameter represents the ambient pressure sensor that is embedded in the NeoFox electronics. It is also important
to note that because the ambient pressure sensor is embedded in the electronics and not the probe itself, this sensor
will not be sensitive to the pressure in the measurement environment if that environment is distinct from the
environment of the electronics unit. Because this value is stored as a fixed point value, the following formula must be
scaled with the following formula in order to deduce the floating point value of the ambient pressure.

Floating Point Ambient Pressure Value (in kPa) = Raw Integer Ambient Pressure Value / 2*°

Flash Write n/a | n/a 93 | n/a

NEOFOX FLASH WRITE DeviceSetParameter Write-Only

This command will cause the variables in the Flash data structure to be written to flash memory. Those variables will
then retain their state when the device has been turned back on. To invoke this command, write to the device as for
any other parameter, using the NEOFOX_FLASH_WRITE code (93). The data value to be written is irrelevant — the
action will happen when the code (93) is received.

Flash Write n/a | n/a 93 | n/a

NEOFOX_FLASH WRITE DeviceSetParameter Write-Only

This command will cause the variables in the Flash data structure to be written to flash memory. Those variables will
then retain their state when the device has been turned back on. To invoke this command, write to the device as for
any other parameter, using the NEOFOX_FLASH_WRITE code (93). The data value to be written is irrelevant — the
action will happen when the code (93) is received.

FPGA Status Uint | n/a 18 | 804

NEOFOX_FPGA STATUS Read-Only DeviceGetParameter

The FPGA status register contains various status indicators from the onboard FPGA. However, the only information
that will be relevant to developers is the FPGA version code, which is contained in bits 4 through 7. In the NeoFox
Viewer, the FPGA firmware version is displayed as the last two digits of the “firmware” display on the “status” panel.

Bit Number Name Description

15 Fifo Sensor Full Reserved — do not alter or depend on this value
14 Fifo Sensor Empty Reserved — do not alter or depend on this value
13 Fifo Sensor Full Reserved — do not alter or depend on this value
12 Fifo CPU Empty Reserved — do not alter or depend on this value
11 Software Reset Reserved — do not alter or depend on this value
10 0 Reserved — do not alter or depend on this value
9 Clip Hi Reserved — do not alter or depend on this value
8 Clip Lo Reserved — do not alter or depend on this value
7 FPGA Version Number (3) FPGA version code bit 3

6 FPGA Version Number (2) FPGA version code bit 2

5 FPGA Version Number (1) FPGA version code bit 1

4 FPGA Version Number (0) FPGA version code bit 0

3 0 Reserved — do not alter or depend on this value
2 FifoCPU Available Reserved — do not alter or depend on this value
1 FifoCPU Prog Empty Reserved — do not alter or depend on this value
0 FifoCPU Prog Full Reserved — do not alter or depend on this value

013-20000-010-04-201211

17

NeoFox Communication Interfaces

e

Q

O

cedn
Optics

Firmware Version Hi Char | n/a 2 | 12

NEOFOX_FIRMWARE_VER Read-Only DeviceGetParameter

The microcontroller firmware version is stored in two distinct bytes — the Firmware Version Hi value and the
Firmware Version Lo value. Concatenated together, these produce the firmware version. Usually, the firmware
version is expressed as a hex short, such as 0x0208. This is how the firmware version is displayed in the NeoFox
Viewer.

It is important to note the following. A call to the DeviceGetParameter function with code 2
(NEOFOX_FIRMWARE_VER) will return an integer whose 2 lowest order bytes represent the Firmware Version Hi
and Firmware Version Lo values. There is no way to query these two bytes independently through the DLL.

Firmware Version Lo Char | n/a 2 | 13

NEOFOX_FIRMWARE_ VER Read-Only DeviceGetParameter

The microcontroller firmware version is stored in two distinct bytes — the Firmware Version Hi value and the
Firmware Version Lo value. Concatenated together, these produce the firmware version. Usually, the firmware
version is expressed as a hex short, such as 0x0208. This is how the firmware version is displayed in the NeoFox
Viewer.

It is important to note the following. A call to the DeviceGetParameter function with code 2
(NEOFOX_FIRMWARE_VER) will return an integer whose 2 lowest order bytes represent the Firmware Version Hi
and Firmware Version Lo values. There is no way to query these two bytes independently through the DLL.

Millisecond Count Uint | Enum 74 | 16

NEOFOX_UP_TIME Read-Only DeviceGetParameter

This value represents the number of milliseconds that have elapsed since the device was powered on for a given
sample. It can be used to verify that data has been refreshed or stored to provide a “time stamp” for each sample. It
will “roll over” after approximately 50 days of continuous use.

Calibration Method Uint | Enum 163 | 308

NEOFOX_CAL METHOD DeviceSetParameter DeviceGetParameter

This parameter selects the calibration method that will be used by the NeoFox in order to calculate oxygen from its
phase measurement. The two point method uses the Two Point Slope, Two Point Offset, and Two Point Tau0
parameters to calculate oxygen. The Multi Point method uses 12 coefficients (A0...T2) to calculate oxygen. The
Single Point option is essentially the same as the Multi Point method, except that it uses a copy of the Multi Point
coefficients that have been modified through a single point reset. More information about these calibration methods is
available in the NeoFox manual and the NeoFox Calibration and Measurement engineering note. It is strongly
recommended that users use the Single Point option instead of the Multi Point option.

Value Description DLL Constant

0 No calibration is used. Oxygen values are NEOFOX_CALMETHOD_NONE
invalid.

1 Uses the two point calibration method NEOFOX_CALMETHOD_TWOPT

2 Uses the multipoint calibration method, without =~ NEOFOX_CALMETHOD_MULTIPT
single point reset updates to the calibration
coefficients

3 Uses the multipoint calibration method, with NEOFOX_CALMETHOD_SINGLEPT
single point reset updates to the calibration
coefficients.

18 013-20000-010-04-201211

http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf

n
Qu'ﬁi?é%ﬁi?ﬂ:s

NeoFox Communication Interfaces

Two Point Slope

Float | n/a

174 | 196

NEOFOX_CAL_2PT_SLOPE

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a two point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Two Point Offset

Float | n/a

175 | 200

NEOFOX_CAL_2PT_OFFSET

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a two point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Two Point Tau0

Float | n/a

170 | 180

NEOFOX_CAL_2PT TAU 0

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a two point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Multi Point Orig A0

Float | n/a

200 | 208

NEOFOX_CAL_MULTI_AQ

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Multi Point Orig Al

Float | n/a

201 | 212

NEOFOX_CAL_MULTI Al

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Multi Point Orig A2

Float | n/a

202 | 216

NEOFOX_CAL_MULTI_A2

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Multi Point Orig BO

Float | n/a

203 | 220

NEOFOX_CAL_MULTI_BO

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Multi Point Orig B1

Float | n/a

204 | 224

NEOFOX_CAL_MULTI_B1

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Multi Point Orig B2

Float | n/a

205 | 228

NEOFOX_CAL_MULTI_B2

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

013-20000-010-04-201211

19

http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf

goOcean

NeoFox Communication Interfaces ..ODTICS
Multi Point Orig C0 Float | n/a 206 | 232
NEOFOX_CAL MULTI_CO DeviceSetParameterFloat DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point Orig C1 Float | n/a 207 | 236

NEOFOX_CAL MULTI_C1 DeviceSetParameterFloat DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement and the NeoFox manual for
more information about this parameter.

Multi Point Orig C2 Float | n/a 208 | 240

NEOFOX_CAL MULTI_C2 DeviceSetParameterFloat DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point Orig TO Float | n/a 209 | 244

NEOFOX_CAL MULTI_TO DeviceSetParameterFloat DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point OrigT1 Float | n/a 210 | 248

NEOFOX_CAL MULTI T1 DeviceSetParameterFloat DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point Orig T2 Float | n/a 211 | 252

NEOFOX_CAL MULTI_ T2 DeviceSetParameterFloat DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP A0 Float | n/a | 256

n/a n/a n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP Al Float | n/a | 260

n/a n/a n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

20 013-20000-010-04-201211

http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf

o Ocean
'Q(‘.O Optics

NeoFox Communication Interfaces

Multi Point Orig C1

Float | n/a

207 | 236

NEOFOX_CAL_MULTI_C1

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point Orig C2

Float | n/a

208 | 240

NEOFOX_CAL_MULTI_C2

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point Orig TO

Float | n/a

209 | 244

NEOFOX_CAL_MULTI_TO

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point OrigT1

Float | n/a

210 | 248

NEOFOX_CAL_MULTI_T1

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the calibration methods app note and the NeoFox manual for more

information about this parameter.

Multi Point Orig T2

Float | n/a

211 | 252

NEOFOX_CAL_MULTI T2

DeviceSetParameterFloat

DeviceGetParameterFloat

This is a Multi Point calibration parameter. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP A0

Float | n/a

| 256

n/a

n/a

n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP Al

Float | n/a

| 260

n/a

n/a

n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP A2

Float | n/a

| 264

n/a

n/a

n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

013-20000-010-04-201211

21

http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf

NeoFox Communication Interfaces

joOcean
leomics

Multi Point SP BO

Float

| n/a

| 268

n/a

n/a

n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP B1

Float

| n/a

| 272

n/a

n/a

n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP B2

Float

| n/a

| 276

n/a

n/a

n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP C0 Float | n/a | 280

n/a n/a n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP C1 Float | n/a | 284

n/a n/a n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP C2 Float | n/a | 288

n/a n/a n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

Multi Point SP TO Float | n/a | 292

n/a n/a n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the
NeoFox manual for more information about this parameter.

22 013-20000-010-04-201211

http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf
http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf

n
Q.O 8%?05

NeoFox Communication Interfaces

Multi Point SP T1

Float | n/a

| 296

n/a

n/a

n/a

This is a Single Point calibration parameter. It is a copy of its counterpart from the multi-point calibration parameter
that is copied during a single point reset. It cannot be read or set through DLL function calls. It also cannot be set
through the serial protocol, but it can be read. See the NeoFox Calibration and Measurement engineering note and the

NeoFox manual for more information about this parameter.

Multi Point SP T2

Float | n/a

| 300

n/a

n/a

n/a

This is a Single Point calibration parameter. Unlike the other Single Point parameters, the value of this parameter is
different than the value of its Multi Point counterpart. This value (the T2 parameter) is updated during a single point
reset, and this is the only difference between the Multi Point calibration and the Single Point calibration parameters.
Unfortunately, the value of this parameter cannot be read back through the DLL at this time. However, it can be read
back through the NeoFox Viewer, in the calibration notes field. It can also be read back, but not set through the serial

protocol.
Set Point 0V Unsigned Short | 0 <X <65535 | 176 | 40
n/a DeviceSetParameter Not supported

This parameter is the 16 bit D to A value that corresponds to a 0V output. Developers can adjust this value to increase

the accuracy of their 0-5V output. By default, the value is 0x0000.

Set Point 5V

Unsigned Short | 0 <X <65535

177 | 42

n/a

DeviceSetParameter

Not Supported

This parameter is the 16 bit D to A value that corresponds to a 5V output. Developers can adjust this value to increase
the accuracy of their 0-5V output. By default, the value is OxFFFF. Customers can also use this parameter to lower the
maximum voltage output. For instance, a maximum output voltage of 3.3V would be approximately OxA8F5.

Set Point 4mA

Unsigned Short | 0 <X <65535

178 | 44

n/a

DeviceSetParameter

Not Supported

This parameter is the 16 bit D to A value that corresponds to a 4mA output. Users can trim this value to increase the
accuracy of their 4-20 mA outputs. By default, the value is 0x32CA.

Set Point 20mA Unsigned Short | 0 <X <65535 | 179 | 46

n/a Not supported

This parameter is the 16 bit D to A value for a 20mA output. Users can trim this value to increase the accuracy of their
4-20 mA outputs. By default, the value is OXFDF2.

Analog Value 1 Float | n/a 154 | 620

n/a DeviceSetParameterFloat Not Supported

This parameter can be used to drive the analog outputs to a user-specified voltage or current. Just as with the other
potential sources for the analog output, it is treated as a dimensionless value that is compared against the upper and
lower bound parameters.

A typical use would be as follows. A user wants to set the 4-20mA output to a static value of 16mA. In order to do
this, the process would be to set the 4-20mA data source to 6 (Analog Value 1), then to set the 4-20mA Lower Bound
parameter to 4, then to set the 4-20mA Upper Bound parameter to 20, and finally to set the Analog Value 1 to 16. This
would properly set the analog output to 16mA.

013-20000-010-04-201211

23

http://www.oceanoptics.com/technical/engineering/NeoFoxCalibration.pdf
http://www.oceanoptics.com/technical/NeoFox.pdf

2Ocean
NeoFox Communication Interfaces ..ODTICS
Analog Value 2 Float | nfa 155 | 624
n/a DeviceSetParameterFloat Not Supported

This parameter can be used to drive the analog outputs to a user-specified voltage or current. Just as with the other
potential sources for the analog output, it is treated as a dimensionless value that is compared against the upper and
lower bound parameters.

A typical use would be as follows. A user wants to set the 4-20mA output to a static value of 16mA. In order to do
this, the process would be to set the 4-20mA data source to 7 (Analog Value 2), the 4-20mA Lower Bound parameter
to 4, then to set the 4-20mA Upper Bound parameter to 20, and finally to set the Analog Value 2 to 16. This would
properly set the analog output to 16mA.

Pressure Source unsigned long | Enum 191 | 436

n/a DeviceSetParameter Not Supported

This parameter determines which source of ambient pressure data to use when calculating the Converted Oxygen:
Percent Concentration value.

Value Description

0 None — The concentration calculation will be reported as -1 (error)
1 Sensor — The concentration calculation will use the onboard ambient sensor pressure
reading.
2 Manual — The concentration calculation will use the value of the manual pressure parameter
Manual Pressure Float | n/a 190 | 432
n/a DeviceSetParameterFloat Not Supported

This is the manually input pressure value that can be used as the ambient pressure during the calculation of the
Converted Oxygen: Percent Concentration value. The value should be given in kPa.

Additional Firmware Controls in FW Version 2.25

As of firmware version 2.25, additional firmware control features are available for developers who wish to
control the communications characteristics of the device. Those users who do not wish to invoke these features
can simply use the default settings of the device as described above and the device will be completely
backwards compatible.

Specifically, two firmware features have been added that will be of use to developers:

o RS232 Settings
o Data Copy Settings

RS-232 Overview

Only Neofox-GT hardware units (those whose serial number has an F or later as its third character) support
RS232 communications. In these units, the RS232 uses the same serial communications protocol described
earlier in this document.

To use the RS232 port on the NeoFox device, you must set the RS232 Enable parameter to '1' via USB. This can
be done in the Advanced Settings panel in the NeoFox Viewer (version 2.54 or later). Users may also wish to set
the baud rate through the NeoFox Viewer prior to communicating with the device.

24 013-20000-010-04-201211

n
Q.O 8epﬁcs

NeoFox Communication Interfaces

RS-232 Pins

RS232 Bx

GPIO Connector (as viewed looking towards the back of the NeoFox unit with the graphic label down and

] 5 t_,..-Grouml

£9
O

O

O £ #RS232 Tx

|

the power jack to the left of the connector

It is important to note that the device will disable RS232 communications in certain conditions:

RS232 Parameters

When the RS232 enable parameter is set to 0.
When the USB connector is plugged in (as detected by the presence of the 5V USB power line)

RS232 Divisor Latch

short | 0 <X < 10000

78 |

NEOFOX_RS232_DIVISOR_LATCH

DeviceSetParameter

DeviceGetParameter

Baud Rate = 12,000,000 / (16 * Divisor

Latch) * (Multiply Value / [Multiply Value

+ Divisor Add value])

RS232 Divisor Add Value

unsigned char | 0<X <256

79 |

NEOFOX_RS232_DIVADDVAL

DeviceSetParameter

DeviceGetParameter

Baud Rate = 12,000,000 / (16 * Divisor

Latch) * (Multiply Value / [Multiply Value

+ Divisor Add value])

RS232 Multiply Value

unsigned char | 0< X <256

80 |

NEOFOX_RS232_MULVAL

DeviceSetParameter

DeviceGetParameter

Baud Rate = 12,000,000 / (16 * Divisor Latch) * (Multiply Value / [Multiply Value + Divisor Add value])

RS232 Enable

unsigned char 0,1

96 |

NEOFOX_RS232_ENABLE

DeviceSetParameter

DeviceGetParameter

This value determines whether or not RS232 communications will be enabled when the USB cable is not present. Its

presence is determined by the presence of the 5V USB power line.

Value Description
0 RS232 is disabled.
1

RS232 will be enabled when the USB connector is not plugged in

013-20000-010-04-201211

NeoFox Communication Interfaces

Target Actual Relative Divisor Multiply Divisor
Baud Baud Error Latch Value Add Value
110 110 0.00% 6250 1 11

300 300 0.00% 2500 0 2

1200 1200 0.00% 625 0

2400 2400 0.00% 250 1 4

4800 4800 0.00% 125 1 4

9600 9603 0.03% 71 1 10
19200 19182 -0.10% 23 7 10
38400 38352 -0.12% 11 7 9
57600 57692 0.16% 13 0

115200 115385 0.16% 6 1 12
230400 230769 0.16% 3 1 12
460800 461538 0.16% 1 5 8
750000 750000 0.00% 1 0

A calculator is available at the following web address to help determine parameter values for baud rates that are
not listed in this table. You will need to use the value of 12,000,000 for the UART lock rate.

http://ics.nxp.com/support/documents/microcontrollers/xls/Ipc2000.uart.baudrate.calculator.xls

RS232 Default Settings

Setting Value

Baud Rate: 57,600 baud (default)
Stop Bits: 1

Parity: None

Flow Control: None

Byte Order: Little endian

Integer Size: 4 bytes

Float Size: 4 bytes

26

013-20000-010-04-201211

http://ics.nxp.com/support/documents/microcontrollers/xls/lpc2000.uart.baudrate.calculator.xls

goOcean
.. ODTICS NeoFox Communication Interfaces

Data Copy Settings

By default, the NeoFox’s “data dump” structure is big, and many host devices cannot handle a data stream of
around 60,000 KBps. Therefore, settings have been developed that allow the user to reduce the size and
frequency of the NeoFox’s data dump.

Specifically, there are two features which have been added:

o Data Copy Mode
e Data Copy Type

To understand what these features do, it is important to understand how the Neofox samples and transmits its
data. By default, the process is as follows:

1. Asample is ready

Note: Every 100 ms, the controller calculates a new value of Tau, oxygen, and temperature. Internally,
the actual sample update occurs whether or not the device is currently in the process of transmitting a
previous sample.

2. Data is copied into the transmission buffer.

Note: If the device is not currently in the process of transmitting a previous sample, it copies its “data
dump” of its parameters to the transmission buffer. If the device is currently transmitting, then data will
not be copied until the transmission is complete. If a new sample becomes available before the current
sample has begun transmitting, then the current sample is never transmitted and the new sample will
take its place waiting for the end of the previous transmission.

3. Once data has been copied into the transmission buffer, it is immediately sent to the host via the UART
Note: This can be over RS232 or the USB, depending on which mode is currently selected.

Data Copy Mode

The Data Copy Mode setting allows you to determine when data should be copied into the transmission buffer.
There are two options for this parameter:

e Auto — When the auto mode is enabled, the default behavior will occur, as listed above.

¢ Request — When the Request mode is enabled, the device will look at the current value of the Data Copy
Trigger setting to determine whether or not to perform the sample copy. When the Data Copy Trigger value
is 0, it will not perform this copy. When the value is 1, it will perform the copy and set the value of the Data
Copy Trigger parameter to 0; it does not perform another copy until you request it to do so.

Data Copy Type

The Data Copy Type parameter can be used to reduce the size of the data dump. There are currently three data
types available to users:

e Type 1: The original data structure format, as documented earlier in this document.

e Type 2: The original data structure format, as documented earlier in this document, but without the two
waveform structures included at the end of the structure. Therefore, the length of the structure is 932 bytes,
and the Protocol Rev byte will be equal to 0x02.

o Type 3: A measurement only structure, which includes a very small subset of the information available in
type 1; specifically, it only includes measurement data.

013-20000-010-04-201211 27

NeoFox Communication Interfaces

e

YOcean
.u. Optics

O

Type 3 Structure Format

Addr | Type | Name Description

0 uchar | Stx Start of transmission character. Set to 0x03.

1 uchar | PacketType Set to OXxDC

2 ushort | FrameSize Set to 5036 (0x13AC)

4 uchar | FrameCount Number of frames uploaded since the device powered on. This rolls
over after 255. It can be used to determine whether any frames
have been missed.

5 uchar | ProtocolRev This byte will always be 0x03 when the Data Copy Type is 0x03.

6 uchar | Reservedl Reserved. Do not depend on this value.

7 uchar | Reserved2 Reserved. Do not depend on this value.

8 ulong | MillisecondCount Millisecond Count

12 float fOxygenConverted Converted Oxygen

16 ulong | uiOxygenUnits Oxygen Units

20 float fTau Tau

24 float fSelectedTemperature | The sensor temperature (converted to a float, in °C or the fixed
temperature depending on the value of the temperature source.

28 uchar | Reserved3 Reserved. Do not depend on this value.

29 uchar | Reserved4 Reserved. Do not depend on this value.

30 uchar | Checksum Set to the aggregate sum of all previous bytes modulus 256.

31 uchar | Eof End of transmission character. Set to 0x04

28

013-20000-010-04-201211

goOcean
.. ODTICS NeoFox Communication Interfaces

Data Copy Parameters

Uart Data Copy Mode | Unsigned char | 0,1 | 88 |

Determines whether new samples should be copied to the Uart automatically or whether the device should wait for
a request from the host before copying the next sample. When the value of this parameter is 0, the device will be in
Auto mode and samples will be copied automatically. When the value of this parameter is 1, the device will be in
request mode, meaning that samples will only be copied when requested by the host.

Uart Data Copy Trigger | Unsigned char | 0,1 | 84 |

When the value of the Data Copy Mode parameter is 1 (Request Mode), and the value of this parameter is 1, the
next sample available will be copied to the transmission buffer and sent through the Uart. This parameter will
immediately be reset to 0.

Uart Data Copy Type | Unsigned char [1,2,3 | 87 |

Specifies the format of the data structure that is copied into the transmission buffer for transmission to the host
through the UART.

Single Point Reset Parameters
A single point reset works as follows:

1. The user puts the temperature sensor and oxygen sensor into an environment with a known oxygen
partial pressure.

2. The user waits for the measurements to stabilize (the longer, the better).
3. The three measurement conditions are written to the device:
e Single Point Tau — the current value of Tau that is read by the sensor in the SPR

environment.

e Single Point Temperature — the current value of temperature that is read by the sensor in the
SPR environment.

¢ Single Point Oxygen — The known partial pressure of oxygen (expressed as percent of 1
ATM) in the SPR environment. In ambient air, at sea level, this is 20.9%.

4. The Single Point Calculate command is issued to the device. This instructs the device to perform the
single point reset, which recalculates the single point coefficients from the original multipoint
coefficients and puts the device into single point calibration mode.

5. (Optional) Some users may want to issue a flash write command as well, in order to save the new SPR
coefficients to memory.

013-20000-010-04-201211 29

©

NeoFox Communication Interfaces .

O

cedn
Optics

¢

Single Point Temperature float | X <200 188 |

Temperature (in degrees C) to use for next SPR calculation. Most users will want to set this to the current value of
Temperature read by the instrument while in the SPR environment.

Single Point Tau float | X<10.0 186 |

Tau (in microseconds) to use for next SPR calculation. Most users will want to set this to the current value of Tau
read by the instrument while in the SPR environment.

Single Point Oxygen float | 0<X 187 [

Percent Oxygen (in percent of 1 ATM) to use for next SPR calculation. Most users will want to set this to the known
value of percent oxygen in the SPR environment. In ambient air, at sea level, this will be equal to 20.9.

Single Point Calculate N/A | N/A 189 |

Writing any value to this parameter will result in a single point reset with the single point reset parameter values
listed above. The new single point coefficients will be calculated and the device will be put into single point mode
(as opposed to multipoint mode). The new value will not necessarily be set in flash memory until the user manually
issues a flash write command.

30 013-20000-010-04-201211

	Engineering Note
	Topic: NeoFox Communication Interfaces
	Products Affected: NeoFox
	Date Issued: 04/18/2011
	Updated: November 2012
	Description
	Architecture Overview
	Variables and Parameters
	Communication Architecture

	NeoFox Serial Interface
	Overview
	Settings
	Writing Data to the NeoFox
	Reading Data from the NeoFox

	DLL Interface
	Opening a Connection
	Reading Data from the NeoFox
	Writing Data to the NeoFox
	Closing a Connection
	Application Maintenance
	Sample Code
	Remarks

	NeoFox DLL Function Reference
	Driver Interface and Hardware Interface
	Driver Interface
	Hardware Interface

	NeoFox Variable Reference Table
	Additional Firmware Controls in FW Version 2.25
	RS-232 Overview
	RS-232 Pins
	RS232 Parameters
	RS232 Default Settings
	Data Copy Settings
	Data Copy Mode
	Data Copy Type

	Data Copy Parameters
	Single Point Reset Parameters

